Easy Worksheet™

Texas TEKS Math 3
Create worksheets, tests, and quizzes for Texas TEKS Math 3.
Main Page Register Help Contact Us
User Name:

Worksheet Title:

or fill in:
To keep server load down, there is a maximum of 100 questions per worksheet.
Create Answer Sheet (Pop-Up Window)
Show how to solve it! (Pop-Up Window)
Mix up the problems. (Good for tests)
Multiple Choice (Good for Standardized Test practice)
Move Instructions into Problems
Interactive Online Test (students only! Limited to 20 questions at a time)
Answer Blanks:

Percent of problems with fractional coefficients (Only where applicable)

Start Numbering with: (Whole Numbers only)
Save this EasyFramework (Teacher Plus+ Account Only!) as a

Condense - Leave no room for student work

Select the number of each type of objective:
(Selecting Random will randomly generate all subtypes)

Click on any title to see the free sample worksheet. (only the first few samples are free)

(Random) (2.A) Number and operations. Compose and decompose numbers up to 100,000 as a sum of so many ten thousands, so many thousands, so many hundreds, so many tens, and so many ones using objects, pictorial models, and numbers, including expanded notation as appropriate;

(Random) (2.B) Number and operations. Describe the mathematical relationships found in the base-10 place value system through the hundred thousands place; (Random) (2.C) Number and operations. Represent a number on a number line as being between two consecutive multiples of 10; 100; 1,000; or 10,000 and use words to describe relative size of numbers in order to round whole numbers; (Random) (2.D) Number and operations. Compare and order whole numbers up to 100,000 and represent comparisons using the symbols >, <, or =. (Random) (3.A) Number and operations. Represent fractions greater than zero and less than or equal to one with denominators of 2, 3, 4, 6, and 8 using concrete objects and pictorial models, including strip diagrams and number lines; (Random) (3.B) Number and operations. Determine the corresponding fraction greater than zero and less than or equal to one with denominators of 2, 3, 4, 6, and 8 given a specified point on a number line; (Random) (3.C) Number and operations. Explain that the unit fraction 1/b represents the quantity formed by one part of a whole that has been partitioned into b equal parts where b is a non-zero whole number; (Random) (3.D) Number and operations. Compose and decompose a fraction a/b with a numerator greater than zero and less than or equal to b as a sum of parts 1/b; (Random) (3.E) Number and operations. Solve problems involving partitioning an object or a set of objects among two or more recipients using pictorial representations of fractions with denominators of 2, 3, 4, 6, and 8; (Random) (3.F) Number and operations. Represent equivalent fractions with denominators of 2, 3, 4, 6, and 8 using a variety of objects and pictorial models, including number lines; (Random) (3.G) Number and operations. Explain that two fractions are equivalent if and only if they are both represented by the same point on the number line or represent the same portion of a same size whole for an area model; (Random) (3.H) Number and operations. Compare two fractions having the same numerator or denominator in problems by reasoning about their sizes and justifying the conclusion using symbols, words, objects, and pictorial models. (Random) (4.A) Number and operations. Solve with fluency one-step and two-step problems involving addition and subtraction within 1,000 using strategies based on place value, properties of operations, and the relationship between addition and subtraction; (Random) (4.B) Number and operations. Round to the nearest 10 or 100 or use compatible numbers to estimate solutions to addition and subtraction problems; (Random) (4.C) Number and operations. Determine the value of a collection of coins and bills; (Random) (4.D) Number and operations. Determine the total number of objects when equally-sized groups of objects are combined or arranged in arrays up to 10 by 10; (Random) (4.E) Number and operations. Represent multiplication facts by using a variety of approaches such as repeated addition, equal-sized groups, arrays, area models, equal jumps on a number line, and skip counting; (Random) (4.F) Number and operations. Recall facts to multiply up to 10 by 10 with automaticity and recall the corresponding division facts; (Random) (4.G) Number and operations. Use strategies and algorithms, including the standard algorithm, to multiply a two-digit number by a one-digit number. Strategies may include mental math, partial products, and the commutative, associative, and distributive properties; (Random) (4.H) Number and operations. Determine the number of objects in each group when a set of objects is partitioned into equal shares or a set of objects is shared equally; (Random) (4.I) Number and operations. Determine if a number is even or odd using divisibility rules; (Random) (4.J) Number and operations. Determine a quotient using the relationship between multiplication and division;

(Random) (4.K) Number and operations. Solve one-step and two-step problems involving multiplication and division within 100 using strategies based on objects; pictorial models, including arrays, area models, and equal groups; properties of operations; or recall of facts. (Random) (5.A) Algebraic reasoning. Represent one- and two-step problems involving addition and subtraction of whole numbers to 1,000 using pictorial models, number lines, and equations; (Random) (5.B) Algebraic reasoning. Represent and solve one- and two-step multiplication and division problems within 100 using arrays, strip diagrams, and equations; (Random) (5.C) Algebraic reasoning. Describe a multiplication expression as a comparison such as 3 x 24 represents 3 times as much as 24; (Random) (5.D) Algebraic reasoning. Determine the unknown whole number in a multiplication or division equation relating three whole numbers when the unknown is either a missing factor or product; and (Random) (5.E) Algebraic reasoning. Represent real-world relationships using number pairs in a table and verbal descriptions. (Random) (6.A) Geometry and measurement. Classify and sort two- and three-dimensional figures, including cones, cylinders, spheres, triangular and rectangular prisms, and cubes, based on attributes using formal geometric language; (Random) (6.B) Geometry and measurement. Use attributes to recognize rhombuses, parallelograms, trapezoids, rectangles, and squares as examples of quadrilaterals and draw examples of quadrilaterals that do not belong to any of these subcategories; (Random) (6.C) Geometry and measurement. Determine the area of rectangles with whole number side lengths in problems using multiplication related to the number of rows times the number of unit squares in each row; (Random) (6.D) Geometry and measurement. Decompose composite figures formed by rectangles into non-overlapping rectangles to determine the area of the original figure using the additive property of area; (Random) (6.E) Geometry and measurement. Decompose two congruent two-dimensional figures into parts with equal areas and express the area of each part as a unit fraction of the whole and recognize that equal shares of identical wholes need not have the same shape. (Random) (7.A) Geometry and measurement. Represent fractions of halves, fourths, and eighths as distances from zero on a number line; (Random) (7.B) Geometry and measurement. Determine the perimeter of a polygon or a missing length when given perimeter and remaining side lengths in problems; (Random) (7.C) Geometry and measurement. Determine the solutions to problems involving addition and subtraction of time intervals in minutes using pictorial models or tools such as a 15-minute event plus a 30-minute event equals 45 minutes; (Random) (7.D) Geometry and measurement. Determine when it is appropriate to use measurements of liquid volume (capacity) or weight; (Random) (7.E) Geometry and measurement. Determine liquid volume (capacity) or weight using appropriate units and tools. (Random) (8.A) Data analysis. Summarize a data set with multiple categories using a frequency table, dot plot, pictograph, or bar graph with scaled intervals; and (Random) (8.B) Data analysis. Solve one- and two-step problems using categorical data represented with a frequency table, dot plot, pictograph, or bar graph with scaled intervals. (Random) (9.A) Personal financial literacy. Explain the connection between human capital/labor and income; (Random) (9.B) Personal financial literacy. Describe the relationship between the availability or scarcity of resources and how that impacts cost; (Random) (9.C) Personal financial literacy. Identify the costs and benefits of planned and unplanned spending decisions; (Random) (9.D) Personal financial literacy. Explain that credit is used when wants or needs exceed the ability to pay and that it is the borrower's responsibility to pay it back to the lender, usually with interest; (Random) (9.E) Personal financial literacy. List reasons to save and explain the benefit of a savings plan, including for college; and (Random) (9.F) Personal financial literacy. Identify decisions involving income, spending, saving, credit, and charitable giving.

Permissions - Can you photocopy these worksheets?


All rights reserved. This page is copyright 1998 Triple Threat Inc. Any violators will be prosecuted through full extent of the law.